Sample questions Physics

S. No	Questions			
1.	A carnot engine working between 300 K has a work output of 800 J per cycle. The amoun of heat energy supplied to the engine in each cycle is a) 800 J b) 1600 J c) 3200 J d) 6400 J	B	1	
2.	For hydrogen gas $C_{p^{-}} C_{v}=a$ and for oxygen gas $C_{p^{-}} C_{v}=b$. The relation between a and b is a) $a=16 b$ b) $a=b / 16$ c) $a=4 b$ d) $a=b$	D	1	
3.	The equation of state corresponding to 8 g of O_{2} is (assume O_{2} to be an ideal gas) a) $P V=8 R T$ b) $P V=R T / 4$ c) $P V=R T$ d) $\quad P V=R T / 2$	B	1	
4.	When an ideal monoatomic gas is heated at constant pressure, the fraction of heat energy supplied which increases the internal energy of the gas is a) $2 / 5$ b) $3 / 5$ c) $3 / 7$ d) $3 / 4$	B	1	
5.	At zero Kelvin, which of the following properties of a gas will be zero? a) Kinetic energy b) Potential energy c) Mass d) Density	A	1	
6.	By exerting a certain amount of pressure on an ice block, you a) Lower its melting point b) Make it melt at $0^{0} \mathrm{C}$ only c) Make it melt at a faster rate d) Raise its melting point	A	1	
7.	If 110 J of heat is supplied to a gaseous system, its internal energy changes by 40 J . The amount of external work done is a) 150 J b) 70 J c) 110 J d) 40 J	B	1	
8.	A body cools from $50.0^{\circ} \mathrm{C}$ to $49.9^{\circ} \mathrm{C}$ in 5 s . How long will it take to cool from $40.0^{\circ} \mathrm{C}$ to $39.9^{\circ} \mathrm{C}$? Assume the temperature of the surroundings to be $30.0^{\circ} \mathrm{C}$ and Newton's law of cooling to be valid. a) 2.5 s b) 10 s c) 20 s d) 5 s	B	1	

S. No	Questions	安	$\sum_{\substack{n}}^{\substack{\pi}}$	(1)
9.	The critical temperature of CO_{2} is $31.1^{\circ} \mathrm{C}$ and the room temperature is $40^{\circ} \mathrm{c}$, then CO_{2} behaves as a a) Gas b) Vapour c) Gas and vapour d) Liquid	A	1	
10.	One mole of a monoatomic gas is mixed with one mole of a diatomic gas. What will be the value of γ for the mixture? (a) 1.5 (b) 1.54 (c) 1.4 (d) 1.45	A	1	

